H2O2-mediated cross-linking between lactoperoxidase and myoglobin: elucidation of protein-protein radical transfer reactions.

نویسندگان

  • O M Lardinois
  • P R de Montellano
چکیده

The H(2)O(2)-dependent reaction of lactoperoxidase (LPO) with sperm whale myoglobin (SwMb) or horse myoglobin (HoMb) produces LPO-Mb cross-linked species, in addition to LPO and SwMb homodimers. The HoMb products are a LPO(HoMb) dimer and LPO(HoMb)(2) trimer. Dityrosine cross-links are shown by their fluorescence to be present in the oligomeric products. Addition of H(2)O(2) to myoglobin (Mb), followed by catalase to quench excess H(2)O(2) before the addition of LPO, still yields LPO cross-linked products. LPO oligomerization therefore requires radical transfer from Mb to LPO. In contrast to native LPO, recombinant LPO undergoes little self-dimerization in the absence of Mb but occurs normally in its presence. Simultaneous addition of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and LPO to activated Mb produces a spin-trapped radical electron paramagnetic resonance signal located primarily on LPO, confirming the radical transfer. Mutation of Tyr-103 or Tyr-151 in SwMb decreased cross-linking with LPO, but mutation of Tyr-146, Trp-7, or Trp-14 did not. However, because DBNBS-trapped LPO radicals were observed with all the mutants, DBNBS traps LPO radicals other than those involved in protein oligomerization. The results clearly establish that radical transfer occurs from Mb to LPO and suggest that intermolecularly transferred radicals may reside on residues other than those that are generated by intramolecular reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The myoglobin protein radical. Coupling of Tyr-103 to Tyr-151 in the H2O2-mediated cross-linking of sperm whale myoglobin.

Sperm whale metmyoglobin, which has tyrosine residues at positions 103, 146, and 151, dimerizes in the presence of H2O2. Equine metmyoglobin, which lacks Tyr-151, and red kangaroo metmyoglobin, which lacks Tyr-103 and Tyr-151, do not dimerize in the presence of H2O2. The dityrosine content of the sperm whale myoglobin dimer shows that it is primarily held together by dityrosine cross-links, alt...

متن کامل

Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase.

Phagocytes secrete the heme protein myeloperoxidase, which is present and active in human atherosclerotic tissue. These cells also generate hydrogen peroxide (H2O2), thereby allowing myeloperoxidase to generate a range of oxidizing intermediates and stable end products. When this system acts on L-tyrosine in vitro, it forms o, o'-dityrosine, which is enriched in atherosclerotic lesions. Myelope...

متن کامل

Reactions of the protein radical in peroxide-treated myoglobin. Formation of a heme-protein cross-link.

Reaction of horse myoglobin with H2O2 oxidizes the iron to the ferryl (Fe(IV) = O) state and produces a protein radical that is rapidly dissipated by poorly understood mechanisms. As reported here, the reaction with H2O2 results in covalent binding of up to 18% of the prosthetic heme group to the protein. The chromophore of the protein-bound prosthetic group is very similar to that of heme itse...

متن کامل

Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links.

Previous studies have reported that myosin can be modified by oxidative stress and particularly by activated haem proteins. These reactions have been implicated in changes in the properties of this protein in food samples (changes in meat tenderness and palatability), in human physiology (alteration of myocyte function and force generation) and in disease (e.g. cardiomyopathy, chronic heart fai...

متن کامل

Characterization of one- and two-electron oxidations of glutathione coupled with lactoperoxidase and thyroid peroxidase reactions.

Glutathione (GSH) was oxidized to GSSG in the presence of H2O2, tyrosine, and peroxidase. During the GSH oxidation catalyzed by lactoperoxidase, O2 was consumed and the formation of glutathione free radical was confirmed by ESR of its 5,5'-dimethyl-1-pyrroline-N-oxide adduct. When lactoperoxidase was replaced by thyroid peroxidase in the reaction system, the consumption of O2 and the formation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 25  شماره 

صفحات  -

تاریخ انتشار 2001